2023-24 MATH2048: Honours Linear Algebra II Homework 1

Due: 2023-09-15 (Friday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. (Friedberg 1.3 Q19) Let W_{1} and W_{2} be subspaces of a vector space V. Prove that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
2. (Friedberg 1.3 Q21) Consider V as the set of sequences $\left\{a_{n}\right\}$ of real numbers. By Exercise 20 of Section 1.2, it is a vector space over \mathbb{R} (No need to prove this). Show that the set of convergent sequences $\left\{a_{n}\right\}$ (i.e., those for which $\lim _{n \rightarrow \infty} a_{n}$ exists) is a subspace of the vector space V.
3. (Modification of Friedberg 1.3 Q24) Show that F^{n} is the direct sum of the subspaces

$$
\begin{aligned}
& W_{1}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{1}+a_{2}+\ldots+a_{n}=0\right\} \\
& W_{2}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in F^{n}: a_{1}=a_{2}=\cdots=a_{n-1}=0\right\} .
\end{aligned}
$$

4. (Friedberg 1.6 Q29a) Prove that if W_{1} and W_{2} are finite-dimensional subspaces of a vector space V, then the subspace $W_{1}+W_{2}$ is finite-dimensional, and $\operatorname{dim}\left(W_{1}+W_{2}\right)=$ $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$. Hint: Start with a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for $W_{1} \cap W_{2}$ and extend this set to a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}, v_{1}, v_{2}, \ldots v_{m}\right\}$ for W_{1} and to a basis $\left\{u_{1}, u_{2}, \ldots, u_{k}, w_{1}, w_{2}, \ldots w_{p}\right\}$ for W_{2}.
5. Let F_{1} and F_{2} be fields. A function $g \in \mathcal{F}\left(F_{1}, F_{2}\right)$ is called an even function if $g(-t)=g(t)$ for each $t \in F_{1}$ and is called an odd function if $g(-t)=-g(t)$ for each $t \in F_{1}$. By Q22 of Section 1.3 the set of all even functions $\mathcal{E}\left(F_{1}, F_{2}\right)$ in $\mathcal{F}\left(F_{1}, F_{2}\right)$ and the set of all odd functions $\mathcal{O}\left(F_{1}, F_{2}\right)$ in $\mathcal{F}\left(F_{1}, F_{2}\right)$ are subspaces of $\mathcal{F}\left(F_{1}, F_{2}\right)$ (no need to prove this).

Suppose $2 \neq 0$ in F_{2}. Show that $\mathcal{F}\left(F_{1}, F_{2}\right)=\mathcal{E}\left(F_{1}, F_{2}\right) \oplus \mathcal{O}\left(F_{1}, F_{2}\right)$. (When $2=0$ in F_{2}, what happens?)

The following are extra recommended exercises not included in homework.

1. Show that $M_{n \times n}(F)$ is a vector space when F is a field.
2. Let S be the set of all 2-tuple real numbers (x, y) such that $x \geq y$. Is S a vector space under the usual operations of vector addition and scalar multiplication?
3. Consider the vector space of all 2×2 matrices with real entries. Is the set of all 2×2 diagonal matrices a subspace of this vector space? Is the set of all 2×2 upper triangular matrices a subspace of this vector space?
4. Find a basis for the null space of the linear system represented by the following matrix: $\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & -2 \\ 3 & 6 & -3\end{array}\right]$.
5. Find a basis for the null space of the linear system represented by the following $\operatorname{matrix}:\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1\end{array}\right]$.
6. Are the vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$, and $\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ linearly independent? Are the vectors $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$ linearly independent?
7. Consider the following set of vectors in $\mathbb{C}^{2}:\left[\begin{array}{c}1+i \\ i\end{array}\right]$, $\left[\begin{array}{c}i \\ 1-i\end{array}\right]$. Are these vectors linearly independent or dependent?
8. Determine if the set of functions $\left\{e^{x}, e^{2 x}, e^{3 x}\right\}$ is linearly independent on the interval $[0, \infty)$.
